72. Edit Distance
#Algorithm #Algorithm_Levenshtein #Algorithm_DP
1. 문제
1-1. 원문
Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
You have the following three operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
Constraints:
0 <= word1.length, word2.length <= 500
word1
andword2
consist of lowercase English letters.
1-2. 내용 번역
주어진 두 문자열 word1와 word2가 있을 때, word1을 word2로 만들기 위해 수행하는 operation의 최소 횟수를 구하여라.
operation의 종류는 문자 삽입, 삭제, 대체 3종류가 있다.
2. 문제 이해
2-1. 내용 이해
음... Example들을 보면 이해가 되었다.
2-2. 접근법 생각
Levenshtein 문제이다.
2-3. 적용한 풀이
Levenshtein
3. 구현
class Solution {
fun minDistance(word1: String, word2: String): Int {
val rowSize = word2.length + 1
val colSize = word1.length + 1
val memo: Array<IntArray> = Array(rowSize){IntArray(colSize)}
for(word2Idx in 0 until rowSize) {
memo[word2Idx][0] = word2Idx
}
for(word1Idx in 0 until colSize) {
memo[0][word1Idx] = word1Idx
}
for(word2Idx in 1 until rowSize) {
for(word1Idx in 1 until colSize) {
memo[word2Idx][word1Idx] = if (word1.get(word1Idx-1) == word2.get(word2Idx-1)) {
memo[word2Idx-1][word1Idx-1]
} else {
val insert = memo[word2Idx-1][word1Idx] + 1
val delete = memo[word2Idx][word1Idx-1] + 1
val replace = memo[word2Idx-1][word1Idx-1] + 1
minOf(insert, delete, replace)
}
}
}
return memo[rowSize-1][colSize-1]
}
}